Novel Efficient Implementations of Hyperelliptic Curve Cryptosystems Using Degenerate Divisors
نویسندگان
چکیده
It has recently been reported that the performance of hyperelliptic curve cryptosystems (HECC) is competitive to that of elliptic curve cryptosystems (ECC). However, it is expected that HECC still can be improved due to their mathematically rich structure. We consider here the application of degenerate divisors of HECC to scalar multiplication. We investigate the operations of the degenerate divisors in the Harley algorithm and the Cantor algorithm of genus 2. The timings of these operations are reported. We then present a novel efficient scalar multiplication method using the degenerate divisors. This method is applicable to cryptosystems with fixed base point, e.g., ElGamal-type encryption, sender of Diffie-Hellman, and DSA. Using a Xeon processor, we found that the double-and-add-always method using the degenerate base point can achieve about a 20% increase in speed for a 160-bit HECC. However, we mounted an timing attack using the time difference to designate the degenerate divisors. The attack assumes that the secret key is fixed and the base point can be freely chosen by the attacker. Therefore, the attack is applicable to ElGamal-type decryption and single-pass Diffie-Hellman — SSL using a hyperelliptic curve could be vulnerable to the proposed attack. Our experimental results show that one bit of the secret key for a 160-bit HECC can be recovered by calling the decryption oracle 500 times.
منابع مشابه
Tate pairing computation on the divisors of hyperelliptic curves for cryptosystems
In recent papers [4], [9] they worked on hyperelliptic curves Hb defined by y +y = x+x+b over a finite field F2n with b = 0 or 1 for a secure and efficient pairing-based cryptosystems. We find a completely general method for computing the Tate-pairings over divisor class groups of the curves Hb in a very explicit way. In fact, Tate-pairing is defined over the entire divisor class group of a cur...
متن کاملEta Pairing Computation on General Divisors over Hyperelliptic Curves y2 = x7-x+/-1
Recent developments on the Tate or Eta pairing computation over hyperelliptic curves by Duursma–Lee and Barreto et al. have focused on degenerate divisors. We present efficient methods that work for general divisors to compute the Eta paring over divisor class groups of the hyperelliptic curves Hd : y2 = x p−x+d where p is an odd prime. On the curve Hd of genus 3, we provide two efficient metho...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملSoftware and hardware implementation of hyperelliptic curve cryptosystems
The hyperelliptic curve cryptosystem is one of the emerging cryptographic primitives of the last years. This system offers the same security as established public-key cryptosystems, such as those based on RSA or elliptic curves, with much shorter operand length. Consequently, this system allows highly efficient computation of the underlying field arithmetic. However, until recently the common b...
متن کاملHyperelliptic Curve Cryptography
The use of elliptic-curve groups in cryptography, suggested by Miller [1] and Koblitz [2] three decades ago,provides the same level of security for the Discrete Logarithm Problem as multiplicative groups, with much smallerkey sizes and parameters. The idea was refined two years later by Koblitz, who worked with the group formed bythe points of the Jacobian of hyperelliptic curve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2003 شماره
صفحات -
تاریخ انتشار 2003